Joystick Mapper for Linux — Configuration

Alexandre Hardy
August 21, 2016

Introduction

This document describes configuration files for the joystick mapper for Linux.
The joystick mapper allows multiple joystick devices to be combined into one
or more joystick devices. Joystick events can also be mapped to mouse events
or keyboards events. The system is well suited to applications that have limited
configurability with regard to joysticks. The joystick mapper kernel drivers
must be loaded before any joystick drivers to ensure a consistent and sensible

mapping.

Configuration file format

The configuration file consists of several lines. Each line is a mapping from
some joystick event to another event. Blank lines are ignored. Comments are
indicated by #. The software ignores everything from a # until the end of a
line.

Each line begins with a keyword describing the kind of mapping that will be
performed. A number of key-value pairs follows the keyword to describe the
mapping.

All axes and button values begin at 0. That is the first button is button 0, the
second button is button 2 etc.

1 Mapping directives

1.1 Common keys

e id — Identifier of joystick for which the mapping is specified. This iden-
tifier corresponds to the mapper device allocated to this joystick (see
/proc/bus/input/devices).

e vendor — Vendor identification of the device for which the mapping is
specified (see /proc/bus/input/devices).

e product — Product identification of the device for which the mapping is
specified (see /proc/bus/input/devices).



Values are decimal/hexadecimal numbers, predefined keywords or strings. Strings
are indicated by placing the value in double quotation marks, eg. ”string”.

1.2 axis
The axis mapping directive maps a joystick axis event to another event. The
allowed keys are

e id

e vendor

e product

e src — This key specifies which axis of the joystick is to be mapped.

e target — This key specifies which device event will be triggered by an axis
event on the specified axis. Valid options are mouse, joyaxis, joybtn or
kbd.

e device — If the target event is a joystick, then the joystick number can
be specified with the device key. The joystick number corresponds to 0
if jsO is selected, 1 if js1 is selected etc.

e axis — If the target has an axis, then the axis key specifies which axis the
event must be mapped to.

e plus

e minus — If the target has a button, then the plus (minus) keys indicate
which buttons/keys must be triggered if the axis is moved in a positive
(negative) direction.

e flags — The invert flag can be used to reverse the sense of the axis. i.e.
positive becomes negative and negative becomes positive. The binary flag
can be used to trigger events only when the axis is moved completely in
the other direction. The trinary flag is similar to the binary flag but also
triggers events when the axis is centered (the 0 input value resets state).

e min — The reported minimum value on the axis. Used for determining
trigger levels.

e max — The reported maximum value on the axis. Used for determining
trigger levels.

e deadzone — The deadzone for the axis.

e speed — for mouse axis targets, this is a speed setting from 0 (no move-
ment) to 32767 (very fast and default)



Either the id or the vendor and product keys must be specified to identify the
joystick. The kbd target only supports button presses.

If min and max are specified, then the input will be remapped into the range
[—32767,32767] using the formula

o 65536 x (x — min)

max — min

— 32767

where z is the input and o is the reported axis position. The value will be
clamped if necessary. Note that if min > max then the axis reporting is switched
around by this formula.

If a deadzone is specified, then the deadzone is enforced after mapping using
the formula above so that any input x such that —deadzone < x < deadzone
will be reported as 0.

Example.
axis vendor=0x068e product=0x00f1 src=0 target=mouse axis=0

This mapping maps from a CH Products PRO Throttle axis 0 to the z-axis of
the mouse.

1.3 button

The button mapping directive maps a joystick button event to another event.
The allowed keys are

e id

e vendor

e product

e src — This key specifies which button of the joystick is to be mapped.

e target — This key specifies which device event will be triggered by an axis
event on the specified axis. Valid options are mouse, joyaxis, joybtn or
kbd.

e device — If the target event is a joystick, then the joystick number can
be specified with the device key. The joystick number corresponds to 0
if jsO is selected, 1 if js1 is selected etc.

e button — If the target has a button, then the button key specifies which
button the event must be mapped to.



e axis — If the target has an axis, then the axis key specifies which axis the
event must be mapped to. The button will trigger a move in the positive
direction on the axis.

e flags — The invert flag can be used to reverse the sense of the axis. i.e.
the button will trigger a move in the negative direction on the axis.

The autorelease flag specifies that the pressed button or key must be
released immediately after pressing, even if the joystick button is held in.

The release flag specifies that the mapping only applies to a release of
the joystick button.

The press flag specifies that the mapping only applies to a button being
pressed, and not to a button being released.

If neither press nor release is specified then two mapping entries are
created, one for press and one for release so that pressing the button on
the joystick will press the target button which will only be released when
the joystick button is released.

The shift key specifies that this mapping is only applied when in a shifted
state (see the shift statement below).

e speed — for mouse axis targets, this is a speed setting from 1 (slow) to
1000 (very fast). 8 is the default.

Either the id or the vendor and product keys must be specified to identify the
joystick. The kbd target only supports button presses.

If the target is kbd, then a string can be provided which specifies a series of
keyboard events that must be executed. Example.

button vendor=0x068e product=0x00f4 src=2 target=kbd button="b REL
b a REL a n REL n g REL g leftshift 1 REL 1 REL leftshift"

This mapping maps from a CH Products Combatstick, button 2, to the key
sequence bang! (see the file keys.map for recognized keys). REL indicates that
the next key must be released.

1.4 shift

The joystick mapper supports a shifted mode in which the operation of buttons
and axes are modified. A single button on a joystick can be designated the shift
button. If this button is pressed then the joystick is in shifted mode. Allowed
keys are

e id
e vendor

e product



e src — This key specifies which button of the joystick is to be the shift
button.

Example.
shift vendor=0x068e product=0x00f1 src=5

This mapping designates button 5 on the CH Products PRO Throttle as the
shift button.

1.5 code

A program can be specified that is executed at regular intervals and can generate
joystick and keyboard events. The joystick events generated by the program can
be remapped through the joystick mapper device. The code joystick is identified
by vendor 0x00ff and produce 0x0000. The syntax of programs is described in
a separate document.

Example.

code "myprogram"

The joystick mapper will read and attempt to compile the program in the file
myprogram. If all mapping statements are correct, then the program will be
communicated to the kernel driver along with the other mappings.

1.6 script

The program refers to existing joysticks in the system. To prevent the program
from failing to function correctly due to changes in the joystick allocation (al-
location to jsO, jsl, mapper0, mapperl etc.), for example if the joysticks have
been unplugged and reinserted, joysticks can be numbered based on vendor and
product identifiers. Allowed keys are

e id

e vendor

e product

e device — Specify the joystick number in the program file.

Example.
script vendor=0x068e product=0x00f4 device=0

This mapping specifies that the CH Products Combatstick will be referred to
as joystick 0 within the program specified by the code statement.



