
Joystick Mapper for Linux – Programming Guide

Alexandre Hardy

February 20, 2016

This document describes programming language used by the joystick mapping
software. The driver creates a new joystick device that can be mapped with the
normal joystick mapping software. To use the programming language effectively
the virtual joystick device must be mapped to some joystick button or axis. The
virtual joystick device is indicated by a vendor id of 0x00ff and a product id
of 0x0000.

At each execution cycle, the program is executed from the beginning until ter-
mination (in sequence) or a maximum number of instructions has been executed
(to prevent the driver from looping indefinitely). The exception to this rule is
threads described in section 3.8.

Comments are indicated by a hash (#) and continue to the end of the line.
We now describe the basic components of a program.

1 Variables

All variables in the programming language are 32-bit integers. These variables
can be used to store results from calculations and can represent button values
or axis values. A new variable is declared with the var statement:

var variable name;

where variable name is any identifier that begins with a letter followed by let-
ters, digits or the underscore. Variable names are case-sensitive. These variables
can be used for any purpose. Variables are allocated to registers in the virtual
machine. Since there are 256 such registers, only 256 variables can be declared
in addition to the predefined variables.

Arrays can be declared as follows

var variable name[constant];

The size of the array must be constant. Each element of the array is assigned to
one register. Registers can be used up very quickly by declaring arrays! Arrays

1

are 0 based, that is the first index of any array is 0.

A variable can be declared with the global keyword instead, in which case the
variable is shared between all threads. This variable can then be used for inter
thread communication.
There are a few predefined variables that have a special meaning. These vari-
ables are described in the following sections.

1.1 firstscan

The firstscan variable is set to 1 if this is the first time the program is executed,
and 0 otherwise. This variable can be used to decide when to initialize program
variables.

1.2 clocktick

The clocktick variable is set to 1 if the program is executed as a result of a
timer event, or 0 if the program is executed due to some other event (such as a
joystick button being pressed).

1.3 timestamp

The timestamp variable indicates the time since first execution of the script
measured in milliseconds. This variable can be used to queue statements based
on time. Examples of use include the delay statement (section 3.9).

1.4 currentmode

The currentmode variable is defined by the program to provide state referring
to a mode of operation. The variable is completely controlled by the user and
may be used for any purpose. Unlike general variables, this variable is accessible
from all threads (see section 3.8).

1.5 js

The js variables give access to the current state of joysticks attached to the
system. There are 16 js variables, namely js0 through js15 that provide
access to a maximum of 16 joysticks. The joysticks are numbered according to
the specification in the current mapping configuration file. That is, the joystick
numbers are explicitly assigned when the joystick is mapped. Each js variable
has two fields:

• An a field that is an array of integers. Each element provides the current
position of that axis of that joystick. For example js0.a[1], refers to the
second axis of the joystick designated as 0 in the configuration file.

2

• A b field that is an array of integers. Each element provides the current
button status of that button of that joystick. For example js1.b[3], refers
to the fourth button of the joystick designated as 1 in the configuration
file. The value is 1 for a depressed button and 0 otherwise.

1.6 a

The variable a is an array of integers specifying the position of the virtual axis
of the virtual joystick created by the program. For example the statement

a[1]=10;

reports that the second axis of the virtual program joystick is in position 10.
The variable may also be read.

1.7 b

The b variable is an array of integers indicating whether a virtual button on the
virtual program joystick is depressed or not. For example, to indicate that the
first button on the virtual joystick is depressed, we write

b[0]=1;

and to indicate (at a later time) that the button is released we write

b[0]=0;

This variable may also be read.

2 Operators

Operators are used to build expressions to perform some calculation. The op-
erators are very similar to C operators with some minor differences. Operators
take constants, variables, array elements or other expressions as parameters.

2.1 Arithmetic operators

The arithmetic operators are as follows:

• Unary +, eg. +v.

• Unary -, eg. −v.

• Binary + eg. v1 + v2.

• Binary - eg. v1 + v2.

• Binary ∗ eg. v1 ∗ v2.

• Binary / – integer division. eg. v1/v2.

3

• Binary % – integer remainder. eg. v1%v2. This function is not imple-
mented with primitive instructions and is implemented as a%b = a −
(a/b) ∗ b.

2.2 Boolean operators

Boolean operators allow certain conditions to be tested. The result is an integer
indicating the truth of the statement. 0 is taken to mean false, and anything else
is taken to mean true. Thus integer values (variables, results from a calculation)
are also boolean values.

• a==b: true if integer a is equal to integer b, false otherwise.

• a!=b: true if integer a is NOT equal to integer b, false otherwise.

• a<b: true if integer a is less than integer b, false otherwise.

• a>b: true if integer a is greater than integer b, false otherwise.

• a<=b: true if integer a is less than or equal to integer b, false otherwise.

• a>=b: true if integer a is greater than or equal to integer b, false otherwise.

• a&&b: true if a is true and b is true, false otherwise.

• a||b: true if a is true or b is true, false otherwise.

• !a: true if a is false, false otherwise.

2.3 Precedence

Unary operators have the highest precedence. The precedence of binary opera-
tors is similar to C. The precedence from highest to lowest is:

• && and ||

• ∗, / and %

• + and -

• ==, !=, <=, >=, < and >

3 Program statements

All statements are terminated by a semi-colon, except the statement block.

4

3.1 Assignment

Assignment is the most commonly used statement. An example of assignment
is

currentmode=1;

This sets the variable currentmode to have the value 1. Be careful not to confuse
the assignment operator = with the boolean equality test ==. A few shorthand
notations exist for some common assignment operations:

• a++ → a=a+1;

• a-- → a=a-1;

• a+=b → a=a+b;

• a-=b → a=a-b;

• a*=b → a=a*b;

• a/=b → a=a/b;

3.2 Statement blocks

If several statements need to be combined into a unit, a statement block can be
created as follows:

{
statement1;
statement2;
statement3;
...

statementn;
}

3.3 if

An if statement has the form

if (condition) statement

If the statement is a simple statement, then it is terminated by a semi-colon. If
it is a block statement, then no semi-colon is necessary.

If the expression condition evaluates to 0 then the statement is not executed,
otherwise the statement is executed. It is also possible to specify to alternatives
as in

if (condition) statement1 else statement2

where statement2 is executed if condition evaluates to 0, otherwise statement1
is executed.

5

3.4 while

A while loop has the form

while (condition) statement;

As long as condition evaluates to a non-zero value statement will be executed.
The condition is evaluated before the statement is executed and is tested directly
before the first (possible) execution, and directly after execution of statement.
If condition evaluates to 0, then the loop is terminated.

3.5 signal

The signal statement has the form

signal(expression);

This statement sends the result of expression to the mapper device (the device
used to program the joystick) to be relayed to a client program. This can be used
to trigger events outside of the kernel space. For example, the joystick could be
reprogrammed by the client program based on the signal sent, or a particular
program such as an e-mail client or multimedia player could be executed.

3.6 press

The press statement allows keypresses to be sent directly to the driver. press
has the form

press("key");

where key is one of the constants listed in keys.txt. press sends a key pressed
event to the driver.

3.7 release

The release statement allows key release events to be sent directly to the
driver. release has the form

release("key");

where key is one of the constants listed in keys.txt. release sends a key
released event to the driver.

3.8 thread

Threads are threads of execution in the sense that each thread will remember
which statement was executing during the last execution of this thread. Thus
threads maintain state information in terms of an instruction pointer and a
collection of registers. Threads do not imply concurrent execution in any way
whatsoever! The thread statement declares a thread with independent state, as

6

well as indicating that the thread must be executed at this point. The main pro-
gram will stop executing until execution of this thread completes or the thread
yields. If the thread halts, then the state information of the thread is reset. If
the thread yields, then the thread will stop execution and save the instruction
pointer so that the thread can be resumed later. The first time the thread is ex-
ecuted (or after the last halt), the current registers are stored in the state of the
thread and the instruction pointer is set to the first instruction (statement) of
the thread. Thereafter (until the next halt), the thread will use its own copy of
the registers (except for special registers such as timestamp and currentmode).
If the thread was not halted, then the instruction pointer will be used to resume
execution of the thread.

The thread statement has the form

thread statements;

The statement declares a new thread to the compiler. The compiler will also
generate instructions to begin execution of the thread (suspending execution
of the main program until the thread has halted or yielded). Each thread
is allocated a unique thread number. The maximum number of threads in a
program is 8. However, an alternative declaration

thread name statements;

can be used to provide a specific name to a thread. All threads in the program
with the same name will share the same thread number, thus increasing the
potential number of threads. If there are two or more such threads, then the
programmer is declaring to the compiler that only one such thread will NOT be
in the halted state at any time.

3.9 delay

The delay statement is only valid within a thread statement. The delay

statement has the form

delay(expression);

This statement will delay the executing thread expression milliseconds (see
timestamp in section 1.3). The mechanism used to delay this period of time is
a check of the amount of time delayed so far, followed by a yield if the required
time has not elapsed. The thread will resume execution at this statement the
next time it is executed if the required time has not elapsed. Note that the
expression is reevaluated every time the delay is checked.

3.10 wait

The wait statement is only valid within a thread statement. The wait state-
ment has the form

7

wait(condition);

This statement halts the executing thread until condition becomes true (that is
non-zero). The wait statement is implemented by a yield if condition is false,
which returns control to the calling thread. The thread will resume execution
at this statement the next time it is executed.

3.11 halt

The halt statement has the form

halt;

and halts execution of the current thread or the main program. Every program
must halt. The compiler automatically adds a halt statement to the end of any
program to ensure that the program will halt.

It is also possible to halt a specific thread (possibly different to the current one)
with the statement

halt name;

4 Examples

A few examples of programs are presented in this section. In most of the ex-
amples it is necessary to provide a mapping from the virtual joystick to a real
joystick, or keyboard events.

4.1 Toe Brakes

Some flight simulators support toe brakes in the form of buttons or keypresses,
but do not support an axis for toe brakes. If this is the case, we can use the toe
brake axis on a set of rudder pedals to simulate joystick button or key pressed.
Assume that the rudder pedals have been designated as joystick 2, and that the
toe brake axes are axes 0 and 1. The program to convert the axis positions to
button presses is:

b[0]=(js2.a[0]>128);

b[1]=(js2.a[1]>128);

Remember that b is the array of buttons for the virtual joystick, and that
boolean and integer expressions are interchangeable. The typical range for any
axis is 0–255, hence the choice of comparison to 128. The program’s virtual
joystick buttons should then be mapped to real joystick buttons, or to key
presses.

8

4.2 Car Accelerator and Brakes

Most rudder pedals have to separate axes for the left and right toe brake, but car
simulators tend to use only one joystick axis for both acceleration and braking.
Assume the same setup as above with axis 0 to be used for the brake, and axis
1 to be used for the accelerator. The two axes can be mapped to one axis with
the program

var val;

#get a positive value for acceleration

>128 indicates acceleration

val=js2.a[1]/2+128;

#produce a braking value

<128 indicates brakes

we need to reverse the sense of the axis

val-=js2.a[0]/2;

a[0]=val;

#note that accelerating and braking at

the same time results in no action

but cannot be resolved here

4.3 Delayed Release of Countermeasures

In modern combat flight simulators it is necessary to drop countermeasures such
as flares or chaff to confuse the seeker heads of missiles launched at the aircraft.
In such a situation it is standard practice to release several countermeasures with
a delay between the release of each one. A thread should be used to achieve
this, so that other conditions may be checked and other actions followed despite
the presence of countermeasures.

var i;

thread {

if (js0.b[5]) {

i=5;

while (i>0) {

b[0]=1;

delay(2);

b[0]=0;

delay(2000);

i--;

}

}

}

This code will trigger the release of 5 countermeasures with a delay of 2 seconds
between each countermeasure. Countermeasures will be launched as soon as
button number 5 of joystick 0 is pressed. They will continue to be launched
even if the button is immediately released.

9

4.4 Trimming

It is sometimes necessary to trim the controls of an aircraft so that straight and
level flight can be maintained with the joystick in a central position. The trim
position may change due to changes in air speed or other factors. The program
below trims the joystick according to the current joystick position.

var trimx;

var trimy;

the original values of trimx and trimy

var ox, oy;

if (firstscan) {

#center position is zero

trimx=128;

trimy=128;

ox=128;

oy=128;

}

#check for trimming button pressed

if (js0.b[5]) {

trimx=128-js0.a[0]+ox;

trimy=128-js0.a[1]+oy;

} else {

ox=trimx;

oy=trimy;

}

#check for reset button pressed

if (js0.b[6]) {

#reset center position is zero

trimx=128;

trimy=128;

ox=128;

oy=128;

}

a[0]=js0.a[0]-trimx+128;

a[1]=js0.a[1]-trimy+128;

4.5 Waiting for Release of a Button

Assume you want to launch exactly one missile with a button press, and the sim-
ulation software launches missiles in sequence according to whether the button
is depressed or not.

thread {

#wait for first press of the button

wait(js0.b[1]);

#wait for release

10

wait(!js0.b[1]);

#press virtual button

b[0]=1;

#and release after 1 second

delay(1000);

b[0]=0;

}

Due to the input driver system it should be possible to omit the delay, both the
press and release should be reported. However, the simulation software may not
work in entirely the same way.

11

