Removed legacy direct-to-SPI interface.
This code now does FSK tx/rx and OOK tx from the same driver.
1 parent 47154ba commit d9c9248e7420259451258bb9b617eece48624570
@David Whale David Whale authored on 15 May 2016
Showing 3 changed files
View
7
src/energenie/drv/spih_arduino.c 100644 → 0
// placeholder for arduino SPI hardware driver
//
// This will be used to aid porting to the arduino.
// The arduino has more predictable timing than the Raspberry Pi,
// and thus it is a much better test suite platform.
 
View
504
src/energenie/radio.py 100644 → 0
# radio.py 26/09/2015 D.J.Whale
#
# **** DEPRECATED ****
#
# NOTE: This is being DEPRECATED.
# It is only here because the FSK physical layer has not been pushed
# into the new radio interface module.
#
# Simple low level test of the HopeRF interface
# Uses direct SPI commands to exercise the interface.
#
# Receives and dumps payload buffers.
#
# Eventually a lot of this will be pushed into a separate module,
# and then pushed back into C once it is proved working.
 
raise RuntimeError("DEPRECATED, do not use this module any more")
 
 
import radio2 as r # A temporary adaptor layer to gain access to SPI directly
 
def warning(msg):
print("warning:" + str(msg))
 
 
def trace(msg):
print(str(msg))
 
 
def ashex(p):
line = ""
for b in p:
line += str(hex(b)) + " "
return line
 
 
#----- HOPERF REGISTER INTERFACE ----------------------------------------------
# Precise register descriptions can be found in:
# www.hoperf.com/upload/rf/RFM69W-V1.3.pdf
# on page 63 - 74
 
ADDR_FIFO = 0x00
ADDR_OPMODE = 0x01
ADDR_REGDATAMODUL = 0x02
ADDR_BITRATEMSB = 0x03
ADDR_BITRATELSB = 0x04
ADDR_FDEVMSB = 0x05
ADDR_FDEVLSB = 0x06
ADDR_FRMSB = 0x07
ADDR_FRMID = 0x08
ADDR_FRLSB = 0x09
ADDR_AFCCTRL = 0x0B
ADDR_VERSION = 0x10
ADDR_LNA = 0x18
ADDR_RXBW = 0x19
ADDR_AFCFEI = 0x1E
ADDR_IRQFLAGS1 = 0x27
ADDR_IRQFLAGS2 = 0x28
ADDR_RSSITHRESH = 0x29
ADDR_PREAMBLELSB = 0x2D
ADDR_SYNCCONFIG = 0x2E
ADDR_SYNCVALUE1 = 0x2F
ADDR_SYNCVALUE2 = 0x30
ADDR_SYNCVALUE3 = 0x31
ADDR_SYNCVALUE4 = 0x32
ADDR_PACKETCONFIG1 = 0x37
ADDR_PAYLOADLEN = 0x38
ADDR_NODEADDRESS = 0x39
ADDR_FIFOTHRESH = 0x3C
 
# HopeRF masks to set and clear bits
MASK_REGDATAMODUL_OOK = 0x08
MASK_REGDATAMODUL_FSK = 0x00
MASK_WRITE_DATA = 0x80
MASK_MODEREADY = 0x80
MASK_FIFONOTEMPTY = 0x40
MASK_FIFOLEVEL = 0x20
MASK_FIFOOVERRUN = 0x10
MASK_PACKETSENT = 0x08
MASK_TXREADY = 0x20
MASK_PACKETMODE = 0x60
MASK_MODULATION = 0x18
MASK_PAYLOADRDY = 0x04
 
MODE_STANDBY = 0x04 # Standby
MODE_TRANSMITER = 0x0C # Transmiter
MODE_RECEIVER = 0x10 # Receiver
VAL_REGDATAMODUL_FSK = 0x00 # Modulation scheme FSK
VAL_REGDATAMODUL_OOK = 0x08 # Modulation scheme OOK
VAL_FDEVMSB30 = 0x01 # frequency deviation 5kHz 0x0052 -> 30kHz 0x01EC
VAL_FDEVLSB30 = 0xEC # frequency deviation 5kHz 0x0052 -> 30kHz 0x01EC
VAL_FRMSB434 = 0x6C # carrier freq -> 434.3MHz 0x6C9333
VAL_FRMID434 = 0x93 # carrier freq -> 434.3MHz 0x6C9333
VAL_FRLSB434 = 0x33 # carrier freq -> 434.3MHz 0x6C9333
VAL_FRMSB433 = 0x6C # carrier freq -> 433.92MHz 0x6C7AE1
VAL_FRMID433 = 0x7A # carrier freq -> 433.92MHz 0x6C7AE1
VAL_FRLSB433 = 0xE1 # carrier freq -> 433.92MHz 0x6C7AE1
VAL_AFCCTRLS = 0x00 # standard AFC routine
VAL_AFCCTRLI = 0x20 # improved AFC routine
VAL_LNA50 = 0x08 # LNA input impedance 50 ohms
VAL_LNA50G = 0x0E # LNA input impedance 50 ohms, LNA gain -> 48db
VAL_LNA200 = 0x88 # LNA input impedance 200 ohms
VAL_RXBW60 = 0x43 # channel filter bandwidth 10kHz -> 60kHz page:26
VAL_RXBW120 = 0x41 # channel filter bandwidth 120kHz
VAL_AFCFEIRX = 0x04 # AFC is performed each time RX mode is entered
VAL_RSSITHRESH220 = 0xDC # RSSI threshold 0xE4 -> 0xDC (220)
VAL_PREAMBLELSB3 = 0x03 # preamble size LSB 3
VAL_PREAMBLELSB5 = 0x05 # preamble size LSB 5
VAL_SYNCCONFIG2 = 0x88 # Size of the Synch word = 2 (SyncSize + 1)
VAL_SYNCCONFIG4 = 0x98 # Size of the Synch word = 4 (SyncSize + 1)
VAL_SYNCVALUE1FSK = 0x2D # 1st byte of Sync word
VAL_SYNCVALUE2FSK = 0xD4 # 2nd byte of Sync word
VAL_SYNCVALUE1OOK = 0x80 # 1nd byte of Sync word
VAL_PACKETCONFIG1FSK = 0xA2 # Variable length, Manchester coding, Addr must match NodeAddress
VAL_PACKETCONFIG1FSKNO = 0xA0 # Variable length, Manchester coding
VAL_PACKETCONFIG1OOK = 0 # Fixed length, no Manchester coding
VAL_PAYLOADLEN255 = 0xFF # max Length in RX, not used in Tx
VAL_PAYLOADLEN66 = 66 # max Length in RX, not used in Tx
##TODO: This calculation looks wrong, inherited from the original C code.
#It accounts for the 'magic' byte that C used for the SPI address.
VAL_PAYLOADLEN_OOK = (13 + 8 * 17) # Payload Length
VAL_NODEADDRESS01 = 0x01 # Node address used in address filtering
VAL_NODEADDRESS04 = 0x04 # Node address used in address filtering
VAL_FIFOTHRESH1 = 0x81 # Condition to start packet transmission: at least two? bytes in FIFO
VAL_FIFOTHRESH30 = 0x1E # Condition to start packet transmission: wait for >30 bytes in FIFO
 
 
#----- HOPERF RADIO INTERFACE -------------------------------------------------
 
def HRF_writereg(addr, data):
"""Write an 8 bit value to a register"""
buf = [addr | MASK_WRITE_DATA, data]
r.spi_select()
r.spi_frame(buf)
r.spi_deselect()
 
 
def HRF_readreg(addr):
"""Read an 8 bit value from a register"""
buf = [addr, 0x00]
r.spi_select()
res = r.spi_frame(buf)
r.spi_deselect()
#print(hex(res[1]))
return res[1] # all registers are 8 bit
 
 
def HRF_writefifo_burst(buf):
"""Write all bytes in buf to the payload FIFO, in a single burst"""
# Don't modify buf, in case caller reuses it
txbuf = [ADDR_FIFO | MASK_WRITE_DATA]
for b in buf:
txbuf.append(b)
#print("write FIFO %s" % ashex(txbuf))
 
r.spi_select()
r.spi_frame(txbuf)
r.spi_deselect()
 
 
def HRF_readfifo_burst():
"""Read bytes from the payload FIFO using burst read"""
#first byte read is the length in remaining bytes
buf = []
r.spi_select()
r.spi_frame([ADDR_FIFO])
count = 1 # read at least the length byte
while count > 0:
rx = r.spi_frame([ADDR_FIFO])
data = rx[0]
if len(buf) == 0:
count = data
else:
count -= 1
buf.append(data)
r.spi_deselect()
trace("readfifo:" + str(ashex(buf)))
return buf
 
 
def HRF_checkreg(addr, mask, value):
"""Check to see if a register matches a specific value or not"""
regval = HRF_readreg(addr)
#print("addr %d mask %d wanted %d actual %d" % (addr,mask,value,regval))
return (regval & mask) == value
 
 
def HRF_pollreg(addr, mask, value):
"""Poll a register until it meet some criteria"""
while not HRF_checkreg(addr, mask, value):
pass
 
 
def HRF_wait_ready():
"""Wait for HRF to be ready after last command"""
HRF_pollreg(ADDR_IRQFLAGS1, MASK_MODEREADY, MASK_MODEREADY)
 
 
def HRF_wait_txready():
"""Wait for HRF to be ready and ready for tx, after last command"""
trace("waiting for transmit ready...")
HRF_pollreg(ADDR_IRQFLAGS1, MASK_MODEREADY|MASK_TXREADY, MASK_MODEREADY|MASK_TXREADY)
trace("transmit ready")
 
 
def HRF_change_mode(mode):
HRF_writereg(ADDR_OPMODE, mode)
 
 
def HRF_clear_fifo():
"""Clear any data in the HRF payload FIFO by reading until empty"""
while (HRF_readreg(ADDR_IRQFLAGS2) & MASK_FIFONOTEMPTY) == MASK_FIFONOTEMPTY:
HRF_readreg(ADDR_FIFO)
 
 
def HRF_check_payload():
"""Check if there is a payload in the FIFO waiting to be processed"""
irqflags1 = HRF_readreg(ADDR_IRQFLAGS1)
irqflags2 = HRF_readreg(ADDR_IRQFLAGS2)
#trace("irq1 %s irq2 %s" % (hex(irqflags1), hex(irqflags2)))
 
return (irqflags2 & MASK_PAYLOADRDY) == MASK_PAYLOADRDY
 
 
def HRF_receive_payload():
"""Receive the whole payload"""
return HRF_readfifo_burst()
 
 
def HRF_send_payload(payload):
trace("send_payload")
#trace("payload:%s" % ashex(payload))
HRF_writefifo_burst(payload)
trace(" waiting for sent...")
HRF_pollreg(ADDR_IRQFLAGS2, MASK_PACKETSENT, MASK_PACKETSENT)
trace(" sent")
reg = HRF_readreg(ADDR_IRQFLAGS2)
trace(" irqflags2=%s" % hex(reg))
if ((reg & MASK_FIFONOTEMPTY) != 0) or ((reg & MASK_FIFOOVERRUN) != 0):
warning("Failed to send payload to HRF")
 
 
 
#----- ENERGENIE SPECIFIC CONFIGURATIONS --------------------------------------
 
config_FSK = [
[ADDR_REGDATAMODUL, VAL_REGDATAMODUL_FSK], # modulation scheme FSK
[ADDR_FDEVMSB, VAL_FDEVMSB30], # frequency deviation 5kHz 0x0052 -> 30kHz 0x01EC
[ADDR_FDEVLSB, VAL_FDEVLSB30], # frequency deviation 5kHz 0x0052 -> 30kHz 0x01EC
[ADDR_FRMSB, VAL_FRMSB434], # carrier freq -> 434.3MHz 0x6C9333
[ADDR_FRMID, VAL_FRMID434], # carrier freq -> 434.3MHz 0x6C9333
[ADDR_FRLSB, VAL_FRLSB434], # carrier freq -> 434.3MHz 0x6C9333
[ADDR_AFCCTRL, VAL_AFCCTRLS], # standard AFC routine
[ADDR_LNA, VAL_LNA50], # 200ohms, gain by AGC loop -> 50ohms
[ADDR_RXBW, VAL_RXBW60], # channel filter bandwidth 10kHz -> 60kHz page:26
[ADDR_BITRATEMSB, 0x1A], # 4800b/s
[ADDR_BITRATELSB, 0x0B], # 4800b/s
#[ADDR_AFCFEI, VAL_AFCFEIRX], # AFC is performed each time rx mode is entered
#[ADDR_RSSITHRESH, VAL_RSSITHRESH220], # RSSI threshold 0xE4 -> 0xDC (220)
#[ADDR_PREAMBLELSB, VAL_PREAMBLELSB5], # preamble size LSB set to 5
[ADDR_SYNCCONFIG, VAL_SYNCCONFIG2], # Size of the Synch word = 2 (SyncSize + 1)
[ADDR_SYNCVALUE1, VAL_SYNCVALUE1FSK], # 1st byte of Sync word
[ADDR_SYNCVALUE2, VAL_SYNCVALUE2FSK], # 2nd byte of Sync word
#[ADDR_PACKETCONFIG1, VAL_PACKETCONFIG1FSK], # Variable length, Manchester coding, Addr must match NodeAddress
[ADDR_PACKETCONFIG1, VAL_PACKETCONFIG1FSKNO], # Variable length, Manchester coding
[ADDR_PAYLOADLEN, VAL_PAYLOADLEN66], # max Length in RX, not used in Tx
#[ADDR_NODEADDRESS, VAL_NODEADDRESS01], # Node address used in address filtering
[ADDR_NODEADDRESS, 0x06], # Node address used in address filtering
[ADDR_FIFOTHRESH, VAL_FIFOTHRESH1], # Condition to start packet transmission: at least one byte in FIFO
[ADDR_OPMODE, MODE_RECEIVER] # Operating mode to Receiver
]
 
config_OOK = [
[ADDR_REGDATAMODUL, VAL_REGDATAMODUL_OOK], # modulation scheme OOK
[ADDR_FDEVMSB, 0], # frequency deviation -> 0kHz
[ADDR_FDEVLSB, 0], # frequency deviation -> 0kHz
[ADDR_FRMSB, VAL_FRMSB433], # carrier freq -> 433.92MHz 0x6C7AE1
[ADDR_FRMID, VAL_FRMID433], # carrier freq -> 433.92MHz 0x6C7AE1
[ADDR_FRLSB, VAL_FRLSB433], # carrier freq -> 433.92MHz 0x6C7AE1
[ADDR_RXBW, VAL_RXBW120], # channel filter bandwidth 120kHz
[ADDR_BITRATEMSB, 0x1A], # 4800b/s
[ADDR_BITRATELSB, 0x0B], # 4800b/s
[ADDR_PREAMBLELSB, 0], # preamble size LSB 3
[ADDR_SYNCCONFIG, VAL_SYNCCONFIG4], # Size of the Sync word = 4 (SyncSize + 1)
[ADDR_SYNCVALUE1, VAL_SYNCVALUE1OOK], # sync value 1
[ADDR_SYNCVALUE2, 0], # sync value 2
[ADDR_SYNCVALUE3, 0], # sync value 3
[ADDR_SYNCVALUE4, 0], # sync value 4
[ADDR_PACKETCONFIG1, VAL_PACKETCONFIG1OOK], # Fixed length, no Manchester coding, OOK
[ADDR_PAYLOADLEN, VAL_PAYLOADLEN_OOK], # Payload Length
[ADDR_FIFOTHRESH, VAL_FIFOTHRESH30], # Condition to start packet transmission: wait for 30 bytes in FIFO
]
 
 
def HRF_config(config):
"""Load a table of configuration values into HRF registers"""
for cmd in config:
HRF_writereg(cmd[0], cmd[1])
HRF_wait_ready()
 
 
#ORIGINAL C CODE
#void HRF_send_OOK_msg(uint8_t relayState)
#{
# uint8_t buf[17];
# uint8_t i;
#
# HRF_config_OOK();
#
# buf[1] = 0x80; // Preambule 32b enclosed in sync words
# buf[2] = 0x00;
# buf[3] = 0x00;
# buf[4] = 0x00;
#
# for (i = 5; i <= 14; ++i){
# buf[i] = 8 + (i&1) * 6 + 128 + (i&2) * 48; // address 20b * 4 = 10 Bytes
# }
#
# if (relayState == 1)
# {
# printf("relay ON\n\n");
# buf[15] = 0xEE; // D0-high, D1-h // S1 on
# buf[16] = 0xEE; // D2-h, D3-h
# }
# else
# {
# printf("relay OFF\n\n");
# buf[15] = 0xEE; // D0-high, D1-h // S1 off
# buf[16] = 0xE8; // D2-h, D3-l
# }
#
# HRF_wait_for (ADDR_IRQFLAGS1, MASK_MODEREADY | MASK_TXREADY, true); // wait for ModeReady + TX ready
# HRF_reg_Wn(buf + 4, 0, 12); // don't include sync word (4 bytes) into data buffer
#
# for (i = 0; i < 8; ++i) // Send the same message few more times
# {
# HRF_wait_for(ADDR_IRQFLAGS2, MASK_FIFOLEVEL, false);
# HRF_reg_Wn(buf, 0, 16); // with sync word
# }
#
# HRF_wait_for (ADDR_IRQFLAGS2, MASK_PACKETSENT, true); // wait for Packet sent
# HRF_assert_reg_val(ADDR_IRQFLAGS2, MASK_FIFONOTEMPTY | MASK_FIFOOVERRUN, false, "are all bytes sent?");
# HRF_config_FSK();
# HRF_wait_for (ADDR_IRQFLAGS1, MASK_MODEREADY, true); // wait for ModeReady
#}
 
 
# first payload
# (radio sync 4 bytes, not counted)
# address 10 bytes
# command 2 bytes
# i.e. 12 bytes
# so, >30 is 2 and a bit payloads loaded.
# 66 byte FIFO size
# so that means FIFO roughly half full before starts tx,
# FIFO at or below half full before another payload will be added
 
# packetsent is based on the fixed payload length
# which is (13 + 8 * 17) = 149
# This maths looks wrong.
# 10 bytes of address, two bytes of command = 12
# 13 includes the dummy byte at the start, but that is for the SPI address and not counted
 
def HRF_send_OOK_payload(payload):
"""Send a payload multiple times"""
 
#TODO: note the zero at the start was the C method of reserving space for address byte
p1 = [0x00] + payload
# This sync pattern does not match C code, but it works.
# The sync pattern from the C code does not work here
# Note that buf[0] in the C is undefined due to being uninitialised
# but it is a space for the address byte in the C fifo burst routine
pn = [0x00,0x80,0x00,0x00,0x00] + payload # from the C
#TODO: note the zero at the start was the C method of reserving space for address byte
# which is not needed here in this python.
# This is old test data due to wrong baud rate - deprecated
#pn = [0x80,0x80,0x80,0x80,0x80] + payload
 
HRF_pollreg(ADDR_IRQFLAGS1, MASK_MODEREADY|MASK_TXREADY, MASK_MODEREADY|MASK_TXREADY)
HRF_writefifo_burst(p1)
for i in range(8):
# waits for <31 bytes in FIFO
HRF_pollreg(ADDR_IRQFLAGS2, MASK_FIFOLEVEL, 0)
HRF_writefifo_burst(pn)
 
HRF_pollreg(ADDR_IRQFLAGS2, MASK_PACKETSENT, MASK_PACKETSENT) # wait for Packet sent
 
reg = HRF_readreg(ADDR_IRQFLAGS2)
#trace(" irqflags2=%s" % hex(reg))
if (reg & (MASK_FIFONOTEMPTY) != 0) or ((reg & MASK_FIFOOVERRUN) != 0):
warning("Failed to send repeated payload to HRF")
 
# Note: packetsent is only cleared on exit from TX (i.e to STANDBY or RECEIVE)
 
 
 
#----- RADIO API --------------------------------------------------------------
 
mode = None
modulation_fsk = None
 
def init():
"""Initialise the module ready for use"""
r.spi_init_defaults()
trace("RESET")
 
# Note that if another program left GPIO pins in a different state
# and did a dirty exit, the reset fails to work and the clear fifo hangs.
# Might have to make the r.spi_init() set everything to inputs first,
# then set to outputs, to make sure that the
# GPIO registers are in a deterministic start state.
r.spi_reset() # send a hardware reset to ensure radio in clean state
 
HRF_clear_fifo()
 
 
def reset():
"""Reset the radio chip"""
r.spi_reset()
 
 
def get_ver():
"""Get the version number of the radio chip"""
return HRF_readreg(ADDR_VERSION)
 
 
def modulation(fsk=None, ook=None):
"""Switch modulation, if needed"""
global modulation_fsk
 
# Handle sensible module defaults for earlier versions of user code
if fsk == None and ook == None:
# Force FSK mode
fsk = True
 
if fsk != None and fsk:
if modulation_fsk == None or modulation_fsk == False:
trace("switch to FSK")
HRF_config(config_FSK)
modulation_fsk = True
 
elif ook != None and ook:
if modulation_fsk == None or modulation_fsk == True:
trace("switch to OOK")
HRF_config(config_OOK)
modulation_fsk = False
 
 
def transmitter(fsk=None, ook=None):
"""Change into transmitter mode"""
global mode
 
trace("transmitter mode")
modulation(fsk, ook)
HRF_change_mode(MODE_TRANSMITER)
mode = "TRANSMITTER"
HRF_wait_txready()
 
 
def transmit(payload):
"""Transmit a single payload using the present modulation scheme"""
r.spi_start_transaction()
if not modulation_fsk:
HRF_send_OOK_payload(payload)
else:
HRF_send_payload(payload)
r.spi_end_transaction()
 
 
def receiver(fsk=None, ook=None):
"""Change into receiver mode"""
global mode
 
trace("receiver mode")
modulation(fsk, ook)
HRF_change_mode(MODE_RECEIVER)
HRF_wait_ready()
mode = "RECEIVER"
 
 
def isReceiveWaiting():
"""Check to see if a payload is waiting in the receive buffer"""
r.spi_start_transaction()
waiting = HRF_check_payload()
r.spi_end_transaction()
return waiting
 
 
def receive():
"""Receive a single payload from the buffer using the present modulation scheme"""
r.spi_start_transaction()
payload = HRF_receive_payload()
r.spi_end_transaction()
return payload
 
 
def finished():
"""Close the library down cleanly when finished"""
r.spi_finished()
 
 
# END
View
src/energenie/radio2.py